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In this paper, thermal stresses are investigated which are caused by the
action of non-stationary sources of heat, arbitrarily distributed in
elastic and visco-elastic media. The construction of Green’s functions

for stresses caused by an instantaneous point source of heat is considered.
In Sections 1 and 2 the state of stress in absclutely elastic bodies is
considered and in Section 3, in visco-elastic bodies.

l. The state of stress in an infinite elastic medium. As is
known from the theory of thermal conductivity, the temperature field due
to the action of an instantaneous point source of heat is described by
the formula

TP (—%), vt x=F (1)

Here W = Qp ¢ is the quantity of heat received in unit volume in unit
time, p is the density, c is the specific heat, and A is the coefficient
of thermal conductivity. The function (1.1) is the solution of the equa-
tion

, 1 9T
Vi — 0 = —2s(R)s () (1.2)

T(R7 t)l==0=01 T (oo, t)y=0, T(Rv °°)=0

where 8 is the Dirac symbol.

We consider first the quasi-static problem. The equations of the
theory of elasticity for displacements, if the inertial terms are
neglected, can be represented in the form

7%+ (M 1) - = (31 4 2u) a,g—: (=1, 2 3) (1.3)
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A, p are the Lamé constants, a, is the coefficient of thermal expansion.

We introduce the potential of thermoelastic displacement ¢. This
potential is related to the displacement by the equation [1]
=2 (i=1, 2, 3) (1.4)

ul—o—;‘

Introducing the function ¢ into equations (1.3) we reduce the system
of equations for displacement (1.3) to one equation [1]

Vo =9I (%= 1+ch¢> (1.5)

{—v

Knowing the function ¢, it is possible according to formulas [ 1] to
determine the stresses

02

where G is the shear modulus, and 8ij is the Kronecker symbol.

In a finite body, the function ¢ at best satisfies only part of the
boundary conditions; so that to the stresses expressed by the formula
(1.6), one must add such selected stresses as to satisfy all the bound-
ary conditions.

In the problem under consideration, we take advantage of spherical
symmetry; we have

% 2 dg _99 }
ot T Rar =%l ur =g (1.7)
. 2 d¢ . . 1 d¢ 0% \
srr = — 2G =5, Spp = Top = ——ZG(Ea—R- +im)  (18)

The expression (1.1) for the temperature field, by use of the Laplace
transform, can take the form of the following Hankel-Fourier integral

2m2n

§— ¢ x & a(a? 4 y24-p/) W, (ar) cos ¥ zda dy
00

0 = ge—P'T (R, t)dt (1.9)
/]

By use of the Laplace transform, from equation (1.7), taking Q = 1,
we have

OF = — 2 S,\ a(o®+ 2+ )"L)“ (@2 4-12)"W, (ar) cos y zdady (1.10)
00
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After carrying out the inverse Hankel-Fourier transform, we obtain

o= o (- 1}/ E) 1]

Hence
s % g R = _ 2 { 1.1
¢*=—r % erf 75 $=4xt, erfz Ve §e ) ( )
Knowing the function ¢* we determine the stresses [2] as
4GA R 2R R2
o*RR = — ;- [erf 75 ﬁ;g-exp(—g)} (1.12)
* - 2GA 2R? " R? 8,
et Aot B (1 (8] (48]
In Fig. 1 a, b, and ¢ curves of the dependence of T*, O*RR, o* on

R are presented for several values of the parameter 6 indicated on the
curves.

For R + =, at an arbitrary moment t, the stress approaches zero. Also
for finite values of R, but for t +» o, the stresses a*i‘ vanish.

The functions o* RR? o*, ;- OF gg can be considered as Green’'s functions.
Let Q(P, t) be the intensity of the sources of heat distributed in the

region I'; then
t

s (P, )=\ {{{Q, )%, P, 1 —1)drar (1.13)
Ty o
In an analogous manner, we have

¢(P, t) = SSSEQ(S, t)o* (P, S, t—t)dt’ (1.14)
I o

For a continuous source of heat, we obtain

(R, t)_AR[ (1_{_282)&{}/& R]/ exp( H (1.15)

For a source changing according to a harmonic law
?(R t)"" Ale [1___‘exp(_R Vz-q] (1; =;‘m—> (1.16)

If in the equations of motion of the theory of elasticity, the inertial
terms are not neglected, then in the case considered, with spherical

symmetry, along with the equations (1.7) and (1.8), we obtain the follow-
ing formulas:
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6’q) 2 3q> 2 0% D¢
s Y Ror — % e = %l YR =3R (1.17)
2 9o % 1 do 0%
orr=—2652% 1 p PO, ogp = dap = — ZG(am +5 aR)+p5t—, (1.18)
Here Y 1—v 26\
o= @ (1—zvp)

¢, is the velocity of propagation of an elastic longitudinal wave, p de-
signates the density.
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Fig. 1

Proceeding in a similar fashion to the quasi-static case, we obtain
for

= — %g S a(a? 4- % + p/)7Ha? + 7° - pPe®)leosyzdady =
00

9 ¢ BP_RVEE

= 4muc?pR p—xlo72

Carrying out the inverse transformation, we obtain [ 3]

¥ Do AL D il V~9)
® _4wR{erch5 5 eXP - [exp erfc(‘/_ +2m +
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~+exp(-—f%)eﬁc(~—-—-V9)]-+(expﬁrﬁiﬁ—mi)q(zn~3a@, (1.20)

V8  2xo 4a?o?

where n is the Heaviside function.

In the case considered, we obtain different formulas for ¢**+ }=/in the
intervals 0 < t < Ro and t > Ro. Knowing the function ¢*, according to
formula (1.18) we obtain the stresses o*, .. Tt is easy to show that both
for R > =, and also for t » «~, the function ¢ * vanishes; and also the
stresses reduce to zero.

For t = Ro there is a discontinuity in stress. It 1s evident that,
considering ¢ * as a Green's function, 1t is possible to determine the
stresses for an arbitrary function Q(P, t).

We consider the state of stress due to the action of a source of heat
moving in a straight line with constant speed v, Designating by fl, 62'
and -f stationary coordinates, we assume that the source has an 1nten51ty
W changlng with time, and moves in an elastic medium along the axis cf

The equation of thermal conductivity in this case has the form

T | #T | #T 1 8T
POV rs— ———— — o e 00 -
st tagm T o =0 (1.21)

We choose a new coordinate system x,, x,, and x., connected with the
moving source of heat, and parallel to the system £,, £,, £;. Applying
a linear transformation

Ty = § —t, Ty = &y, T3 = §3
we obtain equation (1.21) in the following form:

627‘ 6T {1 aT v
ax12 + 6122 + 8x P + N T 0’ (}1* = E;t) (1'22)

In the case of a source having constant intensity, we have aT/dt = 0.
We dwell for a while on this quasi-stationary case.

It is known that in this case we have
Q '
=R w(x4-R) (R = (2% 4 2.2 F 2%, W = Qoc)  (1.23)
Solving the equation

2,
Po Pe P g7 (1.24)

oz, ® + Ars? | Bret 0

we obtain, for Q=1



656 Witold Nowackti

P* = Snpx {(Ei[—p (2, -F )} —1n(z, + R)} (1.25)
Ei (—s) =S -eu;udu (s>0)

Now it is possible, according to formula (1.6), to determine the
stresses o* ij carrying out the appropriate differentiations of the
function ¢ *

am*zth[U—+yR)r*“ﬁRL—1]

e (14 )
(1.26)

:Ezz‘gK

. _
J93~ =

. d
(1\ =14v d 3 and so forth

1—v 8mpx J

Carrying out in the formulas for stress the passage to the limit
p» 0 (v 0), we obtain the well-known formulas for stress due to a
stationary constant source of heat,

12K x7sK
a10* = —_IH-’_ , asg® = — T and so forth

2. Thermal stresses in an elastic half-space. We consider an
elastic half-space (x, > 0), in which an instantaneous source of heat
acts at the point (0, O, «f {). We assume that the plane x, = 0 is free
of stress. Further, we assume that T= 0 for x, = 0. Here the problem is
axially-symmetrical, so that cylindrical coordinates can be used to
describe the system, namely, r and z. The first two boundary conditions

2¥=0 T=0, qg,*=0 forz=0 2.1)

are satisfied, if in the unbounded elastic space we place at the point
(0, {) a positive, and at the point (0, — {) a negative source of heat.
Then, in conformity with formula (1.11), we obtain [ 4]

w0 == 4 ot (y5 ) =5, o (75

B0

“Am

Rio=[r24 (zF )27, A= (2.2)

As is known, the stresses are expressed through the function ¢* in
the following manner:

' 1,09 | &% Pe*

®r ] i —

Orr = = 26 (r ar | gz* ) %" 2G (Or2 oz
¢

a? ' om0 G -
ir* 0t ) ore ¥ = )G:dr(zz (2.3)

0¥ = 9G<

r or
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In the plane z = 0, the stress ¢*’ _ does not vanish. In order that
the stress a‘“”(r, 0, t) should reduce to zro, we impose such a state of
stress that in the plane 2z = 0, the condition should be satisfied

2 ¥ (r, 0, t) 4 % (r, 0, 1) =0, 0¥ (r, 0, ) =0 (2.4)
We determine the state of stress oij*"-by means of the Love function
¢ satisfying the equation T =0,
The function ¢ is taken in the form

o

P = S (C + Daz)e—2:J (av)da for z>0 (2.5)

0

From the second condition (2.4} it follows that C = —{(1 ~ 2v)D.
Taking into account that

* (r, 0, ‘)—EZ‘S (@, €, t)a2], (ar)da

0
where

pla, §, t) =e*erfc (ﬂz{i — }—%) — ¢% erfe (“_‘.2@ + ?%)

we obtain from the first condition {2.4)
D (a, €, t)—— ‘%P(“ 1)

In this mamnner the function 960 15 determined, and from it, the state
of stress aij*’ since

(2.6)

26 9 a° 26 9
8 _ =2 . e ___ ] f -
Orr = 1_2vaz<“v 6r2) » O 1—2voz[<2_”)v aﬁ} °

¥
” 26 97/ 1 9 v 26 8 o?
Ve om0V =R e = 2Rl ey - Le

Oop

In this manner

o

o, =GA S pla, G, t)a’e—a: [(2 —az)Jy(ar) 4 (2v — 2 4 az) %%—'—-)] da, and .

o so forth
If one assumes that dT/dz = 0 in the plane z = 0, then the stresses
ij“ may be determined by placing instantanecus sources of heat located
at” the points (0, ) and (0, — ¢). In this way, in the plane z = 0 the
conditions are satisfied o, = 0 and 9T/9z = 0

42

We eliminate the stress o“"'(r, 0, t) by adding to it the states of

stress ¢ .* and o, .*", expressed by use of the Love function, whereby in
formula (é.S) C = évD should be taken.
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If { approaches zero, we have the case of a source acting at the
origin of the coordinate system, that is, in the plane bounding the
elastic half-space. In this special case we obtain for a continuous
source of heat

S | Ky / a? kY
D, t) =5 (1—2v) lil—aexp(—a%d) ]/1_;— (1 ——71‘})erfc(_.._°‘g ”
(3=4$(t)
For a steady source of heat, that is, for t -» o« we obtain
D, )= & (1—2%)0

We notice that for t - o the stresses arz*(r, z, o) and azz*(r, z, 00)
are equal to zero.

The stresses aij*(r, z, t) for a continuous source of heat may be re-
presented as
04 = 345 *O—gy*W)(r, z, t)

where the stresses aij*(o)(w) do not depend on time. For the stresses
azz*, and Urz* we obtain
Op* = —— 0, * W (r, z, 1), 0% = —0,,*W(r, z, 1)
These stresses vanish for t » o, assuning a maximum for some finite
value of ¢.

We consider the following problems which have importance for technical
applications. Assume that in a finite region I, located in the plane
z = 0 which bounds an elastic half-space, the following boundary condi-
tion for temperature is given:

T(xh Lay 07 t):“f(xl, z2)8(t) (2'7)

and let T = 0 on the remainder of the surface. We construct a Green’s
function for this problem.

The temperature field should satisfy the differential equation

1 8T*
ek 1 047
Vv T ®x Ot 0

and the boundary condition

T* (:Cl’ x21 Ov t) = 8(x1~51)8(x2_52)3(1) (28)
as well as
T* =0 at infinity

For the given temperature in the region I' we obtain (dI"=d¢, d{, )
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T(xly x‘b 2'31 t): ng(Eh E2)T* (xli xz, 13; El! 22) 07 t)dF

r

0ij (%1, Xz T3, )= SS/(Eh Ex) 05 (X1, T2, X35 By, &2 0, f)dl' (2.9)
r

We determine the Green’s function for the axially-symmetric case first,
solving the equation

- 9% 1 9 0N 1 aoT*

(et T am) T T =0 (219
with the boundary condition
) _ (s * __ nFini
T*(r, 0, 1) = —5——, T* = at infinity (2.11)
The solution of equation (2.10) is

o _r ~ 2.12
T*(r, z, t)—wexp(\ 9) (8—-4Kt) ( )

Knowing the function T* one finds ¢* as the solution of equation (1.5)
. 3% R 2R [ R
PF = — o [erf N e A B ” (2.13)

* #

Once the function ¢* is known, the stresses o,."" can be determined
in closed form. For z = 0, the stress o_ *’ vanishes; however the stress
o ,*" is not equal to zero. Therefore it is necessary to superpose upon
the state of stress arl*', the state of stress o__*”, expressed by means
of the function ¢% by formulas (2.6). The quantities C and D encountered

in the love function (2.5), are fixed by the boundary conditions for z=0
3rz*’ + 0 = O, 0y = 0

From these conditions we obtain

C=—(1—2v)D, D (a, )_(1_—2,) erfc“‘/‘“)

In the case of the temperature field satisfying equation (2.10), with
the boundary conditions

T*{r, 0, t):%%zn(t), T* =0 at infinity

where the function (t) is the Heaviside function, we obtain

T* == zﬂ [1—01"1'?——‘(7—% exp (—%—2)} (2.14)
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and also

oz & B 1 R?
¢*=—4—1§§[1—(1~m)erfei§_ﬁ /& exp (-3“)] (2.15)

We obtain the stresses o, ** from formulas (1.6), and the stresses
ai}.*" from formulas (2.6). The function ¢%1s determined by formula (2.5),

where
C=—D(—2), D t)=01—2) 511 —F( 1)

Fa, t)= (1 -+ 2a2xt)erfc (@} xt) — Qa]/é_—t exp (— a’xt)

In the special case of a stationary temperature field (¢t » o), the

stresses 0 _* and 0, * are set equal to zero.

3. The state of stress in visco-elastic media. We consider
thermal stresses caused by the action of an instantaneous source in an
infinite medium, for the model of a visco-elastic body suggested by
Biot [6] and Berry [ 7]. We extend the relations given by these authors
to the case of thermal stresses. We have

i
o @ ) =2 {0 — ) - o e+
15}
4 6 (z,, T (=,
+aijg{)\(z—z)—~5§;—ﬂ — BN —1) + 20 (t — )] %——T}-}dt (3.1)
[}

The relations given apply to bodies which in the initial moment were
unstressed. Let the relaxation functions be A(t) and u(t), which for an
absolutely elastic body reduce to the Lamé constant.

We consider first the quasi-static problem. Substituting the stress
o.. into the equilibrium equations, which express the stress through dis-
placements, and introducing the potential of thermo-visco-elastic strain
¢ by means of

uiz—a; (i1, 2, 8)

we obtain for the function ¢, by analogy with equation (1.5), the formula

t b4
\ 2a—9+re—o 8% drmaagg[Bk{zdf)%-?.p(t—-r)]gdr (3.2)
Q L¢]

Expressing the relations (3.1) by use of the function ¢ and using
equation (3.2) we obtain
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t
i} 2 :
i (on ) = 20— 5 (5 — 3V o lan D cmrew B3)
0

We assume that the visco-elastic body was in the initial instant free,
i.e. unstressed. We carry out in equation (3.2) and the relations (3.3),
the Laplace transformation,

t t
8 (z.,p)= Se—plT (zr, t)dt, ®(z,, p)= Se-—ptqg (zr, t)dt
0 0

t
Eij (22,, P) = Soe_p‘cij ($,-, l) dt

obtaining
VO (2, p)=3(p)8 (2, p) (3.4)
and also
o .
(@ p) =26 (p) (G, — % V) @@, p) (3.5)

The following designations are introduced:

3’ 2p’ ,
$(p)= S BERTE 0 G(p) = pi (p)

We notice that for an absolutely elastic body, we have the following
relationships (see formulas (1.5) and (1.6))
i a,') (3.6)

1
VO (@, p) =38 ) (%=1
62 N (o]
Lz, p)=2G (a_x:d':i; — 0ij Vz) \ (xr, P) 3.7

where G 1s a constant quantity not dependent on the parameter p.

At this point we introduce the designations ¢ ° and aijo for an abso-
lutely elastic body.

From a comparison of (3.4) and (3.6), and also (3.5) and (3.7), it
follows that

9 ° G 9 °
O@ p= 2@, p) I, @ p) = L0225 @, ) 68

Introducing the functions F(p) and G(p), where**

9
Fip=2220 g =22 (3.9)

** The functions F(p) and G(p) are assumed in such form as to insure the
inverse transformation of these functions.
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after an inverse Laplace transformation, from formulas (3.8) we obtain

4
1¢ 4 o ;
¢ (z,, t) = -56& h(t—n) 7 ¢ (@, T)de (3.10)

515 (1, £) = g g;‘(t 92 (4, 7y de

The expressions derived above permit the determination of the displace-
ments and stresses in a visco-elastic body by use of solutions obtained
for an absolutely elastic body. In many cases it will be more convenient
to determine first the function

t
i a
¢ (@, 1) = —é—;SF(t —1) -9 (@, 7 de (3.11)
o
and to arrive with its aid at the stresses
2
o4 (2r, 1) = 2 (5 g — Bu¥" ) $ (o 1) (3.12)

Let an instantaneous source of heat act at the origin of the coordinate
system in a visco-elastic medium. We assume that the relaxation functions
A(t) and p(t) have the same relaxation time

ME) =R, p(t) =pe™, N (p)= p+z b (p) = S5 (3.13)
Since
3hg -+ 2p
F(p)= T = Ro S, o M

therefore, in conformity with formula (3.11), and taking equation (1.11)
into account, we obtain

i

a 1
— e{fg)y Y — e [t A4
$(R, t) = S e Sl —— W dr = - [e A(R, 1)](3.14)

where

AR, t) = %— e—st {exp{—- iR ]/“%—) eric <V—§ﬁ —1 V;;) +

+ exp (Z[{]/ £ erfc V’m -+ LVEE)]

For a continuous source we obtain

SR, 1) = — ;“ et — erfe ﬁ“’i + A(R, t)] (3.15)
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We obtain the stresses 0 by formula (3.12). If in the equations of
equilibrium we take into account the inertial terms, then along with
equation (3.4), and the relations (3.5), we obtain the following equations
and relations:

V2O (zr, p)— p*s* (p) D (2, p) = $(p) B (2, p)

9 . [
(=) = s (3.16)

~pov 8t °
Lij (zr, p)=2u(p)(m—6uv’ | © (27, p) + pp*® (zr, p)  (3.17)

We introduce the function ¥ (x_, p) = G(p) ® (x_, p), whereupon the
relation (3.17) may be given in the form

B (on P) = 2 (555 —83V*) ¥ (or )+ 8@ (@ p)  (318)

Comparing equation (3.17) with the corresponding equation for an
absolutely elastic body,

V20° (2, p)— PP, D (1, p) = 948 (2, p) (3.19)

where.ao2 and 0 are constant quantities independent of the parameter p,
it is apparent that it is impossible to construct between the functions
® and ®° such relations as were obtained in the quasi-stationary problems
for an absolutely elastic body.

In the case of an instantaneous source of heat, assuming that the
functions A(t) and u(t) are expressed by means of the same exponential
relation as before, and with the same relaxation time, 6"1, we find that
the solution of the equation (3.16) has the form

O (R, p) = — D SRV PO om T ()]
(P =B B = 573 (3.20)
Thus
@ (R, p) = A(—:}— ——p—é—;})[exp(— RV%)_CXP [—R VW-*-_E)”
(A:ﬁaiﬁﬁ*”=:15“$> (3.21)

Carrying out an inverse Laplace transformation, we obtain
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q:(R,t):—-A{erfc R L(R,t;y)—N(R,t)+K (R, e,n)} (3.22)

V édxt

Here the following definitions apply:

LR, t;n)= — "‘ exp —R V—— erfc V__ W) +
+ exp (R V%) erfc (‘7% + V“’?M

N(R,t)= [exp(—ER?}/B—) -+

t

eRVE I (Vs Vo*—R%B) o
4 ;/(3 ‘S,_exp( 5 ) 1 S Rzﬁ_— dv] n(t—R Vﬁ)
RV @

t

K(R,t;e,»q)=gh(ﬂ, t— 1) o g (x; e, M) dr
0
where

h(R, 1) = exp(— ) [o (/e V E—RB) (1 — RVE)

and also

-

gt;e,m) = Slfﬂ:(t <V_”+ Vet ne™erl) (e +—n)r>dr

For determining the stresses 0j» one more function 1is necessary:

o(R, t) (¥ (R, p) = G(p) D(R, p))
The function ¢ (R, p) has the form

YR, p) = 4 (5 — ) [exp(— RY E) —exp(— RVER G T 9) |

Pp—n
(4= s trs)

Carrying out the inverse Laplace transformation, we obtain

9(R, 1) = AL (R, t;—e)— L(R, t; n)+ K (R, t; ¢, — &) — K (R, t; &, 1)1 (3.23)



Some three-dimensional problems of thermoelasticity 665

We determine the stresses by use of the formula

N 4 9y %
e = T RORTPom

9% 19 2%
== 2t )+

Determination of the quasi-static thermal stresses in a visco-elastic
hal f-space introduces, in principle, no great difficulties. First the
stresses o .. are determined for an infinite medium, as was demonstrated
in Section 2, and then the boundary conditions at the plane z = 0 are
satisfied by superposition of the state of stress o .” The stresses
E..(xr, p)can be expressed by use of the function ¢t{ whereupon we obtain
the formulas for % .(x , p) from equations (2.6), in which in place of y
we set A (p)/2[ A’ ;) + p”(p)], and in place of G, we use the quantity

p’{p).
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